

In situ inspection of Laser Powder Bed Fusion (LPBF) parts using Electromagnetic Sensors

Bernard Revaz, CEO SAMG meeting Nov. 2024

Who we are

- Company developing in situ inspection for advanced manufacturing (metal PBF-LB)
- Reducing inspection costs and delays
- Founded in 2020 as a spin-off from ETH and Sensima, an NDT company
- Project with inspire, Fraunhofer, ETH, ESA, etc.
- Active commercial projects in Aerospace, Medtech, and Energy sectors
- Contribute to new industry standards
- Designs approved by machine manufacturers, with full product integration achieved with GFMS (DMP350)
- Released the W1 product in 2021, with the W2 product set for release in 2024.

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Innosuisse – Schweizerische Agentur für Innovationsförderung

ASA

Office for Economic Affairs and Innovation (SPEI)

The problem/The solution

- 30% to 50% of the fabrication costs plus significant delays are caused by post process part inspection
- Leightweight and efficient 3D printing designs are uninspectable
- Critical components (aero, space, medtech) require stringent methodology for inspection

→Interesting 3D printable components do not reach their market because of inspection
→Our solution: integrate established NDE technique in the process

From monitoring to inspection

Levels	Description	Contribution to the following qualification steps
0	Machine input variables	Machine (IQ)
1	Input key process variables (laser power)	
2	Ouput key process variables (melt pool properties)	
3	+corrective actions	Process (OQ)
4	Process anomaly detection, process signatures correlated with flaw with a certain probability (spatter induced lack of fusion)	
5	In situ inspection	Part (PQ)

• What techniques are available ASTM 3166:20

TABLE 3 Application of NDT	o Detect Additive	Manufacturing	Discontinuity Classes ^A	
				-

		Con	vered in this	Guide					Not Co	wered in this	Guide	
Discontinuity Class	CT/RT/	ET	MET ^B	PCRT	PT	IRT	UT	AE	LT	NR	MT	VT
	CR/DR											
Surface	XC	XD	X		XD	-	-		-		-	X
Porosity	X	XD	-	X	XD	-	X	-	-	-	-	X
Cracking	XE	XD	-	X	XD	X	х	х	XF	-	х	X^G
Lack of Fusion	XE	XD	-	X	XD	X	x	х	-	-	X	-
Part Dimensions	X	-	x	-	-	-	-	-	-	XH	-	-
Density [/]	XJ	-	-	х	_	-	-	-	-	-	-	-
Inclusions	XK	XD	-	X	-	X	x	-	-	-	-	-
Discoloration	-	-	-	-	_	-	-	-	-		-	X
Residual Stress	-	X ^{D,L}	X	х	-	-	-	-	-	X	-	-
Hermetic Sealing	_	-	-	_	-	_	-	-	XF	-	-	-

^A Abbreviations used: __ = not applicable, AE = Acoustic Emission, CR = Computed Radiography, CT = Computed Tomography, DR = Digital Radiology, ET = Eddy Current Testing, IRT = Infrared Thermography, LT = Leak Testing, MET = Metrology, MT = Magnetic Particle Testing, NR = Neutron Radiography, PCRT = Process Compensated Resonance Testing, PT = Penetrant Testing, RT = Radiographic Testing, UT = Ultrasonic Testing, and VT = Visual Testing.

^B Includes Digital Imaging.

^C Especially helpful when characterizing internal passageways or cavities (complex geometry parts) for underfill and overfill, or other internal features not accessible to MET, PT, or VT (including borescopy).

^D Applicable if on surface.

^E Radiographic methods are not optimal for detecting tight laminar features like cracking and LOF, which typically do not exhibit enough density change.

F If large enough to cause a leak or pressure drop across the part.

G Macroscopic cracks only.

^H Conventional neutron radiography (NR) allows determination of internal and external dimensions.

[/] Pycnometry (Archimedes principle).

^J Density variations will only show up in imaged regions having equivalent thickness.

^K If inclusions are large enough and sufficient scattering contrast exists.

^L Residual stress can be assessed if resulting from surface post-processing (for example, peening).

5 © ASTM International ASTM International Conference on Advanced Manufacturing

NDT with Eddy Currents

- Principles: ac magnetic fields generate currents in the part
- Advantages of EC for metal LPBF: non contact, integration
- Purpose of examination: discontinuities and more
- Standardisation efforts for AM: ASTM/ISO and FAA
- Detection limits: PoD

ICAM2024

What can be measured with Eddy Currents ICAV2024

ISO 15549, purpose of examination	Application to metal PBF-LB	Project example
to reveal discontinuities in the product which could affect its fitness for purpose;	See ASTM 3166 (cracks, pores, lack of fusion, inclusions, etc), rogue flaws	Inspire, DILAPRO, MTC, ESA,
to measure the thickness of coatings or layers;	Monitoring of process, SPC	Software development
to measure other geometric characteristics;	Detection of cold cracking, prevent part failure, lattice integrity, heat exchangers, hybrid manufacturing	Volum-e, HESSO-VS, TH Rosenheim
to measure metallurgical or mechanical properties of the product+sort products	In situ monitoring of mechanical performance, reduce coupon mechanical tests	Fieldmade
to measure the conductivity and/or permeability of the product;	Measure porosity	EOS, Zeiss, Constellium, Rosswag
+ to measure residual stress	Prevent part failure, reduce HIP	Uni Pavia

7 © ASTM International

Machine integration

AMiquam W1

Process monitoring providing unique subsurface information on material properties

2021

8 © ASTM International

ASTM International Conference on Advanced Manufacturing

Software UI

Data acquisition and processing architecture ICAV2024

ASTM INTERNATIONAL Helping our world work better

Thank you.

Bernard Revaz

www.amcoe.org

11 © ASTM International